Total Pages: 8

AB-233674

M.Sc. (Semester-II) Examination, June-2025

(Backlog)

CHEMISTRY

(Organic Chemistry-II)

Time Allowed: Three Hours

Maximum Marks: 70

Note: This question paper is divided into four sections. Attempt questions of all four sections as per given direction.

Distribution of marks is given in each section.

(Objective Type Questions)

Note: Attempt any ten questions. Each question carries 1 mark. [10x1=10]

AB-233674/650

(1)

[P.T.O.]

1.	Cho	ose the	correct answer :	, (iv) The	e Woodward-Hoffmann rules are based on :	
	(i)	Hofmann elimination typically leads to :		(a)	Free radical mechanism	
		(a)	The most substituted alkene	(b)	Molecular orbital symmetry	
		(b)	The least substituted alkene	(c)	Carbocation stability	
		(c)	The formation of a carbocation		Electrophilic addition	
		(d)	The attack of a nucleophile	(d)		
	(ii)	Руго	ytic Syn-elimination is most commonly	(v) A (4	+2) cycloaddition is also known as :	
		obse	ved in :	(a)	Diel's - Alder reaction	
		(a)	E ₁ reactions	(b)	Sigmatropic rearrangement	
		(b)	E ₂ reactions	(c)	Electrocyclic reaction	
		(c)	Ester thermal reactions	(d)	Ene reaction	
		(d)	Electrophilic substitution	(vi) Whi	ch of the following is a cheletropic reaction?	
	(iii)	In E ₂	elimination, the correct orientation for	(vi) Whi		
		maxin	num reactivity is :	(a)	Diel's Alder reaction	
		(a)	Cis-periplanar	(b)	Sulphur dioxide reacting with butadiene	
		(b)	Syn-periplanar	(c)	Cope rearrangement	
		(c)	Anti-periplanar	(d)	Claisen rearrangement	
AB-2:	33674	(d) 1/650	Gauche (2)	AB-233674/650	(3) [P.T.O.]	

(vii)	Sigmatropic rearrangement involve :		, (x)	4.65	In photochemistry, isomerisation of alkenes usually results from :	
	(a) (b)	Breaking of Sigma bonds only Migration of Sigma bonds accompanied by pi electron shift		(a)	S _N ¹ substitution Light induced rotation about the double bond	
	(c)			(c)	Hydrogen abstraction	
	(d)	Carbocation rearrangements		(d)	Radical addition	
(viii)	The excited singlet state differs from the ground state in:		(xi)		n condition favours anti-Markonikov addition r to alkene?	
	(a)	Electron Spin Orientation		(a)	Presence of Water	
	(b)	Number of Protons		(b)	Peroxides	
	(c)	Charge		(c)	Acidic Medium	
	(d)	Mass		(d)	Basic Medium	
(ix)	The Di- π -methane rearrangement involves :		(xii)		n of the following compounds would undergo ophilic addition more readily?	
	(a)	Migration of a single carbon atom		(a)	Ethen	
	(b)	Formation of a new π bond		(b)	Acetylene	
	(c)	Rearrangement of two π -system		(c)	Ethane	
	(d)	Radical chain reactions		(d)	Formaldehyde	
AB-23367	(4)	AB-2336	74/650	(5) [P.T.O.]		

SECTION-B

(Very Short Answer Type Questions)

Note: Attempt any five questions. Each question carries 02 marks. (Word limit 25-30 words). [5x2=10]

- 2. (i) What is the key difference between E₁ and E₂ mechanism?
 - (ii) Define Pyrolytic syn-elimination.
 - (iii) What does the Woodward Hoffmann rule predict?
 - (iv) Give an example of a (4+2) cycloaddition reaction.
 - (v) What is a sigmatropic reaction?
- (vi) What initiates a photochemical reaction in organic compound?
 - (vii) Mention one product of Di- π -methane rearrangement.

SECTION-C

(Short Answer Type Questions)

Note: Attempt any five questions. Each question carries 04 marks. (Word limit: 250 words) [5x4=20]

The Edition

AB-233674/650 (6)

- (i) Explain the E₁CB mechanism and mention conditions under which it occurs.
 - (ii) State the Woodward-Hoffmann rules and explain their significance in pericyclic reactions.
 - (iii) What are sigmatropic rearrangements? Explain with an example of a (1,5)-hydride shift.
 - (iv) Define Cheletropic reactions and give one characteristic feature of such reactions.
 - (v) Explain the process of absorption of light in organic molecules and its effect on their electronic states.
 - (vi) Describe the Di- π -methane rearrangement mechanism in photochemistry.
 - (vii) Explain 1,3 dipolar cycloaddition in detail.

SECTION-D

(Long Answer Type Questions)

Note: Attempt any three questions. Each question carries 10 marks. (Word limit: 500 words) [3x10=30]

AB-233674/650

(7) [P.T.O.]

- (i) Discuss the mechanism of E₁ and E₂ elimination reactions. Compare their stereochemistry, kinetics and substrate preferences.
 - (ii) Explain the orientation of the double bond in elimination reactions with reference to Hoffmann and Saytzeff rules. Include examples and mechanistic details.
 - (iii) What is Diel's Alder Reaction? Explain regioselectivity and stereoselectivity in detail with suitable examples.
 - (iv) Describe the photochemistry of alkenes and aromatic compounds including mechanisms of isomerisation, ring closure and rearrangements.

